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[¥TSE Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of
people for many years. Their detection in the early stages paves the way for the proper treatment. The
present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting
brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method.

The proposed method has two stages of feature extraction and classification. A
12-layer CNN was used to extract the features of the MRl images and then the softmax activation function
was used to classify these features. The proposed method was applied to a standard database consisting
of three brain tumor types of meningioma, glioma, and pituitary.

[FTTE The proposed method had better performance compared to previously presented methods. Its
accuracy was reported as 98.68%.

[@TEIERT Meningioma, glioma, and pituitary tumors are the most common types of brain tumors. Early
detection of these tumors can decrease the risk of death. Because of its fully connected structure, the
use of proposed deep CNN can help physicians to correctly detect brain tumors with MRI images.
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English Version a neurological evaluation should determine the location of
the tumor and its relationship to surrounding structures.
This information is very vital for choosing the best treat-
ment method, including surgery and radiation therapy, but
doctors always have difficulty in accurately diagnosing the
location of the tumor. This problem is usually due to ex-
cessive fatigue of doctors, high image artifact, and so on.
Given this, a computer-based intelligent diagnostic system

can help neurologists make the correct diagnosis. The use

1. Introduction

bnormal cell growth in any part of the
body is called a tumor. In general, brain
tumors are divided into two types: benign
and malignant. This most widely used tu-
mor grading system has been proposed by

the World Health Organization (WHO) [1]. Neurologists
play an important role in the evaluation and treatment of
brain tumors. When a brain tumor is clinically diagnosed,
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of intelligent medical diagnostic systems as an assistant to
physicians and radiologists, besides helping them, can pave
the way for accurate and error-free identification and distin-
guishing these diseases from other similar diseases [2].
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In recent years, the use of diagnostic systems based on
the deep learning method has been widely used because of
its high efficiency, so many studies have been conducted in
this field. For example, Gupta and Khanna [3] conducted a
study entitled “A non-invasive and adaptive CAD system
to detect brain tumor from T2-weighted MRIs using cus-
tomized Otsu’s thresholding with prominent features and
supervised learning.” They used non-homogeneous tech-
niques for preprocessing brain MR images segmented by
Otsu’s thresholding technique. In the next step, several fea-
ture extraction methods such as Tamura, LBP, Gabor filters,
GLCM, and Zernike were applied to segmented images.
Then, from the used methods, two prominent samples were
selected using entropy measures. Finally, a support vector
machine (SVM) was used for the classification. They have
achieved 98% accuracy and 100% sensitivity.

Zikic et al. [4] developed an interpretive method for
converting 4D data, such that standard 2D convolutional
neural network (CNN) architectures can also be used to
perform brain tumor segmentation. The results reported
on the BRATS dataset show a dice score of 83.7% for the
whole tumor region, 73.6% for the core tumor region, and
69% for the active tumor region. To classify brain lesions in
MRI images of the breast, Amit et al. [5] used a VGG net-
work and the extracted features were classified using SVM.
The reported accuracy on a database of 123 MRI images,
without the use of color channels, is 73% with a sensitiv-
ity of 77% and a specificity of 68%. Using a simple Seg-
Net network, Korfiatis et al. [6] performed segmentation
on the BRATS data and reported an average dice accuracy
of 87.6%. Sajid et al. [7] used deep learning networks to
diagnose brain tumors using BRAST database images and
different MRI images. They reported that their method was
successful with very good simulation results.

One of CNN’s new approaches is to evaluate the perfor-
mance of brain tumor diagnosis using deeper architectures
[8] by implementing 3 x 3 filters in convolutional layers.
Using this method, more convolutional layers can be added
to the architecture, without reducing the impact of the ac-
ceptance field of previous larger filters. Besides, deeper ar-
chitectures use more nonlinearity and have less filter weight
because they use smaller filters which reduce the likelihood
of preprocessing. A modified version of the rectified linear
unit (ReLU) called leaky ReL.U (LReLU) has been used as
anonlinear activation function. CNN’s proposal, which has
11 deep layers on the BRATS suite, achieves a dice score of
88%, 83%, and 77% for the overall, core, and active tumor
regions, respectively. Pereira et al. [9] used CNN for the
segmentation of MRI images. Their proposed network was
based on a U-net which has two upsampling and expan-
sion paths and used LReLU with o = 0.3 as the activation
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function. After each layer of convolution with 3*3 kernel
size and LReLU activator, a dropout = 0.2 technique was
used. The proposed architecture was used for both segmen-
tation of the whole binary tumor and segmentation within
the multiclass tumor.

The only difference is the number of kernels of the last
layer, which is proportional to the number of classes. The
cross-entropy function is introduced as a network error
function and is used to optimize SGD information with a
learning rate of 0.01. Havaei et al. [10] presented a fully
automated brain tumor segmentation method based on deep
learning. First, they discussed different types of architec-
tures based on CNN. Their network examines both local
and global contextual features simultaneously. It used the
last layer, which is a convolutional simulation of the fully-
connected (FC) layer, and allowed a 40-fold increase in
speed. They also introduced a two-phase learning process
that allowed us to address the problems associated with
unbalanced tumor segmentation labels. Finally, they exam-
ined a cascaded architecture in which the base CNN output
was considered as a source of additional information for a
subsequent CNN. The results reported on the 2013 BRATS
dataset showed that their architecture was 30 times faster
than existing optimized CNNS.

Pereira et al. [11] performed brain tumor segmentation
using full CNNs. The network architecture for HGG con-
sisted of 11 layers with a max pooling layer followed by
three convolutional layers and finally three FC layers, while
the network architecture for LGG consisted of 9 layers with
one max pooling layer after two convolutional layers and fi-
nally three FC layers. The HGG architecture is deeper than
that of LGG; hence, a dropout of 0.5 was used in LGG,
while in HGG it was 0.1. This technique was used only in
FC layers. LReLU activator function was used in all layers,
while the softmax function was applied for the last FC layer
and padding technique for convolutional layers. During
learning, the categorical cross-entropy error function was
used with the SGD optimizer. Amin et al. [12] proposed
a new CNN architecture based on DDN for the diagnosis
of brain tumors. Seven layers were used for classification:
3 convolutional layers, 3 ReLU layers, and one softmax
layer. The input MR images were first divided into several
segments and then the center pixel value of each segment
was presented to the DNN.

Extensive experiments were performed using 8 large-
scale benchmark datasets, including BRATS 2012, 2013,
2014, 2015, and ISLES 2015, 2017. Dong et al. [13] used
a U-Net based fully convolutional network for brain tumor
detection and segmentation. They used a 28-layer CCN ar-
chitecture and could achieve the desired accuracy.
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As mentioned above, various factors affect the identifica-
tion and classification of tumors such as imaging format and
noise, physician fatigue, etc., so it is necessary to develop
an intelligent diagnostic system for the classification of tu-
mors. In this paper, we used a deep learning method based
on a 2D CNN with high accuracy to detect brain tumors
from MRI images. The second section introduces the pro-
posed computer-aided detection (CAD) system. The results
and discussion are presented in the third and fourth sec-
tions, and finally, in section 5 we present the conclusions.

2. Materials and Methods

Studies on MRI images of 3 types of brain tumors were col-
lected. Figure 1 shows a block diagram of the study method.
MRI images were first entered as input to the proposed net-
work. Previously, traditional methods were used to extract
features and classify them. In this study, feature extraction
and classification were performed by deep learning methods
in an integrated way based on a 2D deep convolutional net-
work. Its properties are presented in the next sections.

Standard MRI images are used to diagnose brain tumors.
MRI imaging has different protocols, of which T1, T2, and
FLAIR protocols are commonly used for research. In this
regard, we used 1.5 Tesla MRI images with the T1 proto-
col. For these images, the database presented in reference
[14] was used. This database contains images of 3 different
types of brain classes in a dimension of 512 x 512 related
to meningiomas (708 images), gliomas (1426 images), and
pituitary tumors (930 images). Figure 2 illustrates three im-
ages from three classes of this database. The dimension of
these images was changed from 512 x 512 to 128 x 128 for
use in the proposed method.

Training of a network minimizes the error function based
on real network outputs compared to optimal network
outputs. This procedure is done by modifying the free pa-
rameters of the network, including weights and biases. The
training method used in the proposed network is supervisor
training. In this method, a supervisor monitors the learner’s
behavior and reminds it how to function properly. In other
words, the learning system is a set of data pairs consisting
of network inputs and favorable outputs. After applying
the network input, its output is compared with the favor-
able output and the learning error is calculated and used to
modify the network parameters so that if the same inputs
are reapplied to the network, the network output will be
closer to the favorable output. In this method, images are
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applied to the network in batches of 64; although it requires
more memory, it will have higher stability. The proposed
network architecture is shown in Figure 3. The most im-
portant layers of this architecture are briefly described in
the next section.

Convolution operation in the image is such that the filter
with the desired size convolves over the original image. In
this way, at any moment, the filter matrix arrays are placed
on the pixel arrays of the image and multiplied. Finally, the
results of all parts are summed up and one number is ob-
tained for each filtered part. In the next step, the filter of
one unit goes to the right and the operation is repeated. This
operation continues until all pixels of the image are swept.
Finally, a new matrix is produced. In this study, 3 convolu-
tional layers with the ReLU activation function are used,;
there are 32 filters with a 3x3 kernel size in each layer [15].

Pooling layers are placed at regular intervals between suc-
cessive convolutional layers. This technique is very com-
mon in a convolutional architecture and can be used to re-
duce the size of the network feature map and its parameters.
In other words, the function of pooling layers is to reduce
the spatial size of the image to reduce the number of param-
eters and calculations within the network and, thus, control
overfitting. The most common way is to use them with 2x2
filters and max pooling [16]. Table 1 shows the pooling
layers of the proposed network.

The flattening layer is an important layer that is placed be-
tween the layers that perform convolutional feature extrac-
tion and output classification. This layer converts the data
that intends to enter the classification stage into a vector.

After convolutional layers, there are the last FC layers.
These layers act like their counterparts in traditional artificial
neural networks and comprise almost 90% of the parameters
of a CNN. The FC layer allows us to present the network
result in the form of a vector with a specified size. This vector
can be used to categorize images or continue further process-
ing [17]. In this regard, different classification algorithms
are used, one of which is the softmax activation function. In
mathematics, the softmax function or normalized exponen-
tial function is a generalization of the logistic function. This
function takes a vector z of K real numbers as input and gives
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a vector ¢ (Z) of K real numbers (0, 1) as output whose sum
of the components is 1 (see Formula 1). It is mainly used in
the field of mathematics, especially in the theory of probabil-
ity and related fields. Classification by softmax function has
a unique advantage over N-dimensional vectors. To classify
extracted vectors In deep learing, it determines the prob-
ability of the extracted vectors and then classifies them. The
softmax function is a form of logistic regression. The main
idea of logistic regression is to use the logical regression
method in classification, which judges the input data and
gives a single discrete output [ 18]. The softmax method has
only one drawback i.e., its high computational complexity.
However, this problem has been solved with an improve-
ment in the GPU. Owing to the mentioned advantages, we
used the softmax function in the FC layers.

z
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The dropout layer is used in FC layers and between them
to prevent the network from overfitting and avoid the com-
plexity of FC layers (Figure 4). In this study, two dropout
layers were used and the rate of each layer was set to be 0.5.

The performance of a classification system is measured
by various parameters such as accuracy, precision, sensitiv-
ity, and F1 score. Using these parameters allows users to
understand how well a model performs in analyzing tex-
tual data. To evaluate the performance of a classification
system, a fixed test dataset (a set of textual data with pre-
defined size whose labels are specified) can be used. Such a
process in the evaluation phase divides the training data into
two subsets: the first subset is used to train the model and
the second subset is used to test the model.

Figure 1. Block diagram of the study method
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Classification accuracy defines the number of correct pre-
dictions made by a classifier divided by the total number of
predictions made by that classifier (Formula 2):

TP+TN

2. Accuracy= ———————
TP+TN+FP+FN

In the above Formula, TP is true positives, TN stands for
true negatives, FP is false positives, and FN stands for false
negatives.

Classification precision defines the ratio of the number of
correct predictions made for samples of a particular class
to the total number of predictions for samples of the same
class (including all correct and incorrect predictions) (For-
mula 3):

P
TP+FP

3. Precision=

Classification sensitivity refers to the number of image
data correctly classified in a particular class to the total
number of data that should be classified in that class (For-
mula 4):

P
TP+FN
The F1 score combines precision and sensitivity param-

eters to determine how well a classification model performs
(Formula 5):

4, Sensitivity=

5. F]=2x Sensiticity * Precision

Sensiticity+Precision

3. Results

In the proposed method, 80% of the database images
were selected for training the model and 20% for testing the
model, while there is no interference between training and
test data. Training data with a batch size of 64 were sent to

Evaluation
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Figure 2. Three classes of brain tumors. From left to right: Meningioma, glioma, and pituitary tumor

£ ) £ §i- 8 2 £ = =R = B o B
R | 31 R T 1 11 3 3 1 1 1
29>
. uarterly of
Figure 3. The proposed convolutional neural network he Horizon of Medical Sciences
Table 1. The layers of the proposed convolutional neural network

Layer No. Size

The first convolutional layer 32 3x3

The First max pooling layer 1 2x2

The second convolutional layer 32 3x3

The second max pooling layer 1 2x2
The third convolutional layer 32 3x3
The third max pooling layer 1 2x2

The flattening layer 1 -

The First FC layer 512 -

The First dropout layer 0.5 -

The second FC layer 128 -

The second Dropout layer 0.5 -

The third FC layer 10 =
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Table 2. The overall results of performance evaluation parameters

F1 score Precision Sensitivity Accuracy Results
95.42 93.51 96.32 99.14 1.00
98.31 95.45 95.17 98.57 2.00
97.45 96.71 98.21 98.32 3.00
94.13 94.38 96.81 99.02 4.00
98.17 95.02 95.32 98.36 5.00
96.69 95.01 96.36 98.68 Average

uarterly of

the network; this network was trained in 100 iterations. The
proposed model performed better than other methods by us-
ing hierarchical learning and extracting high-level features.
A computer with a Corei7-6700HQ processor, NVIDIA
1060-6G byte graphics card, 8G byte DDR4 RAM, and
1TB hard drive was used to implement the proposed deep
learning network codes. To run the program in Windows,
Anaconda software version 3.7, Spyder software, and Ten-
sorFlow machine learning platform were used. Table 2
presents the mean overall accuracy and other parameters
of the proposed method per 5 times of program execution.
The proposed method was compared with several similar

studies presented in Table 3.
4. Discussion

This study presents a multi-class classification method for
MRI images of brain tumors using a deep learning method.
The used images were T1 type and have three types of brain
tumor classes: 708 images of meningioma tumors, 1426 im-
ages of glioma tumors, and 920 images of pituitary tumors.
The proposed method includes a main classification stage
using a 12-layer CNN consisting of three convolutional
layers, three max pooling layers, one flattening layer, two

Figure 4. Dropout layer function

he Horizon of Medical Sciences

dropout layers, three FC layers, and the softmax activation
function was used to classify the three classes. The average
accuracy of the proposed method after 5 times running was
98.68%. The proposed system can be used for the detection
of brain tumors. It was compared with several similar stud-
ies that mostly used the image zoning technique and the
accuracy of our method was found much higher than theirs.

One of the strengths of this study was the use of a 12-lay-
er deep CNN, which increases the network accuracy to
98.68%, while one of its drawbacks was the lack of using
clinical MRI images with different classes to diagnose mul-
tiple brain tumors simultaneously.

5. Conclusion

The brain is the most important organ in the body that
controls all other parts of the body. If there is a disease in
this part, disorders can occur in other parts which some-
times can lead to death. In this study, an automated CAD
system based on deep learning was presented to diagnose
and classify brain tumors. Since in the proposed method,
high-level features were extracted by deep learning, the
accuracy of classification and detection was very high and
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Table 3. Comparing the proposed method with other methods

Author(s) User interaction level Performance
Accuracy Sensitivity Precision
Pereira et al. Fully automated 88% 83% 77%
Kroun et al. Semi- automated 88% 83% 72%
Abran et al. Fully automated 87% 77% 73%
Havaei et al. Semi- automated 86% 77% 73%
Mennez et al. Fully automated 83% 75% 77%
Dowi et al. Fully automated 85% 74% 68%
Zikic et al. Fully automated 83.70% 73.60% 69%
Hamaki et al. Semi- automated 72% 57% 59%
Zikic et al. Fully automated 83.70% Unknown Unknown
Havaei et al. Fully automated 78% Unknown Unknown
Mark et al. Fully automated 74% Unknown Unknown
Wang et al. Fully automated 85% Unknown Unknown
Wang et al. Fully automated 90.50% Unknown Unknown
Amin et al. Fully automated 80% Unknown Unknown
Panetal. Fully automated 66% Unknown Unknown
Sajid et al. Fully automated 90% Unknown Unknown
Pereira et al. Fully automated 75% Unknown Unknown
Present study Fully automated 98.68% 96.36% 95.03%
uarterly of

he Horizon of Medical Sciences

the size of the feature vector also decreased. Because of the
large number of images in the used database, the network

was designed to provide the highest execution speed and The authors would like to thank the Deputy for Research
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